
プログラミングで数学の世界を冒険だ!

2026 年 1 月 24 日(土)

目次
1 はじめに . ⁠1

1.1 目標 . ⁠1
1.2 プログラミング初心者の方へ . ⁠1

2 SageMath の電卓モード . ⁠2
2.1 チュートリアル . ⁠2
2.2 電卓モードで遊ぼう . ⁠3

3 SageMath でプログラミング . ⁠6
3.1 チュートリアル . ⁠6
3.2 平方根

√
2 = 1.41421356237309504880… . ⁠11

3.3 対数log 2 = 0.69314718055994530941… . ⁠15
3.4 ネイピア数𝑒 = 2.71828182845904523536… . ⁠19
3.5 円周率𝜋 = 3.14159265358979323846… . ⁠28

4 おわりに . ⁠41
参考文献 . ⁠41

1 はじめに

1.1 目標
プログラミング言語 SageMath を用いて数学の世界を一緒に冒険しましょう. 数学の中で
も微分積分学の数列と無限級数を数値実験します. 数値実験をして計算式の意味を汲み取
り、更にはその神秘性を感知して欲しいです. つまり実験結果を見てどうしてこんな不思
議な性質があるのだろうか？と疑問を持って貰えたら幸いです.

1.2 プログラミング初心者の方へ
SageMath は数学の幅広い処理を扱うプログラミング言語で, Python とほぼ同じ文法で
す. SageMath の使い方は本稿でも説明しますが、詳しく勉強したい人は Python の入門
書を読むと良いでしょう.　基本に的を絞った(滝澤成人, 2018) または (三谷純, 2021) があ
ります.

SageMath を動かす環境は CoCalc というオンライン環境(https://cocalc.com)をお勧めし
ます. ブラウザで動作するのでアプリをインストール必要がありません. そしてなんと無料
で使えるので安心して下さい.

プログラミング初心者のためにスキルアップのコツを箇条書きします.
• まず教科書を写経して自分の手元でプログラムを動かす.
• 小さいプログラムを沢山書いて沢山動かす.
• 分からない部分は人工知能に質問する.
• 初心者のうちはバイブコーディングを使わない.

1 of 41

https://cocalc.com

プログラムを動かすときは事前に出力を予想して下さい. 予想が外れた場合は不安になら
ずじっくり考察して下さい. 理屈で考えても分からないときは、プログラムの 1 部を変更
したり不要なコードを除去してから再度動かしてみて下さい.

2 SageMath の電卓モード

2.1 チュートリアル
まずは SageMath を電卓として使いましょう. コマンドラインで

$ sage

と入力し 10 秒ほど待ちます. すると SageMath が電卓モードで起動します. 試しに9 + 6 =
15を計算しましょう.

sage: 9+6

15

次に電卓を終了させましょう.

sage: exit()

$

つづいて引算, 掛算, 割算をします.

sage: 9-6

3

sage: 9*6

54

sage: 9/6

3/2

ここで9/6が有理数3
2と認識されていることに注意して下さい. 浮動小数点の1.5000…として

認識させたい場合は, 関数 n を使います.

sage: n(9/6)

1.50000000000000

更に関数 n は引数 digits で有効桁数を指定できます.

sage: n(100000 / 17, digits=20)

5882.3529411764705882

次は整数 17 を 3 で割ると余りが 2 になることを計算します.

sage: 17 % 3

2

次は28 = 256を計算します. 以下の 2 通りの記法法があります.

sage: 2^8

256

sage: 2**8

256

2 of 41

続いて
√
2 = 1.41421356237…を計算します.

sage: n(sqrt(2))

1.41421356237310

sqrt は square root の略です.

2.2 電卓モードで遊ぼう
以下の演習問題を解くことで SageMath の計算を特訓します. 雑談は興味が無ければ読み
飛ばしてもかまいません.

問題: 297210を数値計算せよ.
解答:

sage: n(297/210)

1.41428571428571

雑談:
√
2に近い値です. コピー用紙の A4 サイズは 210mm × 297mm と国際規格に基づい

て定められています. 実は縦横比がほぼ1 :
√
2となるように設計されています.

問題: 0.841 × 1.189を数値計算せよ.
解答:

sage: 0.841 * 1.189

0.999949000000000

雑談: 1に近い値です. コピー用紙の A0 サイズは 841mm × 1189mm と定められています.
その面積はほぼ 1 平方メートルとなるよう設計されています.

問題: 257182を数値計算せよ.
解答:

sage: n(257/182)

1.41208791208791

雑談:
√
2に近い値です. コピー用紙の B5 サイズは 182mm × 257mm と規格で定められて

います. 実は縦横比がほぼ1 :
√
2となるように設計されています.

問題: 1.030 × 1.456を数値計算せよ.
解答:

sage: 1.030 * 1.456

1.49968000000000

雑談: 1.5に近い値です. コピー用紙の B0 サイズは 1030mm × 1456mm と規格で定められ
ています. その面積はほぼ 1.5 平方メートルになるよう設計されています.

問題: 1 + 24
60 +

51
602 +

10
603 を数値計算せよ.

解答:

sage: n(1 + 24/60 + 51/60^2 + 10/60^3)

1.41421296296296

3 of 41

雑談:
√
2に近い値です. この値はバビロニアの粘土板 YBC7289 に刻印されています.

問題: 1 + 1
3 +

1
3×4 −

1
3×4×34を数値計算せよ.

解答:

sage: n(1 + 1/3 + 1/(3*4) - 1/(3*4*34))

1.41421568627451

雑談:
√
2に近い値です. 古代インドの数学者がこの値を算出しました.

問題: 31071及び317を数値計算せよ.
解答:

sage: n(3 + 10/71)

3.14084507042254

sage: n(3 + 1/7)

3.14285714285714

雑談: ともに円周率𝜋に近い値です. アルキメデスは31071 < 𝜋 < 317を示しました.

問題: 355113を数値計算せよ.
解答:

sage: n(355/113)

3.14159292035398

雑談: 円周率𝜋に近い値です. 祖沖之(そちゅうし)がこの値を算出しました.

問題: 142857 に 1,2,3,4,5,6 を順に掛けなさい.
解答:

sage: 142857 * 1

142857

sage: 142857 * 2

285714

sage: 142857 * 3

428571

sage: 142857 * 4

571428

sage: 142857 * 5

714285

sage: 142857 * 6

857142

雑談: 不思議なことに各積では 1,4,2,8,5,7 の 6 つの数字が巡回します.

問題: 17を有効桁数 50 で数値計算せよ.
解答:

sage: n(1/7, digits=50)

0.14285714285714285714285714285714285714285714285714

雑談: 循環小数の中に前問の 142857 が出てきます.

4 of 41

問題: 12, 22, 32, 42, 52, 62を13で割った余りを求めよ.
解答:

sage: 1^2 % 13

1

sage: 2^2 % 13

4

sage: 3^2 % 13

9

sage: 4^2 % 13

3

sage: 5^2 % 13

12

sage: 6^2 % 13

10

雑談: この 1,3,4,9,10,12 を次の問題で使います.

問題: 076923 に 1,3,4,9,10,12 を順に掛けなさい.
解答:

sage: 076923 * 1

76923

sage: 076923 * 3

230769

sage: 076923 * 4

307692

sage: 076923 * 9

692307

sage: 076923 * 10

769230

sage: 076923 * 12

923076

雑談: 不思議なことに各積では 0,7,6,9,2,3 の 6 つの数字が巡回します.

問題: 113を有効桁数 50 で数値計算せよ.

sage: n(1/13, digits=50)

0.076923076923076923076923076923076923076923076923077

雑談: 循環小数の中に前問の 076923 が出てきます.

問題: 076923 に 2,5,6,7,8,11 を順に掛けなさい.

sage: 076923 * 2

153846

sage: 076923 * 5

384615

sage: 076923 * 6

5 of 41

461538

sage: 076923 * 7

538461

sage: 076923 * 8

615384

sage: 076923 * 11

846153

雑談:不思議なことに各積では 1,5,3,8,4,6 の 6 つの数字が巡回します.

3 SageMath でプログラミング

3.1 チュートリアル

3.1.1 プログラムの作成と起動

プログラムを作成して動作させる手順を説明します. まず hello.sage というファイル名で
以下のテキスト文章を作成します.

hello.sage

print("Hello World")

print('Welcome to SageMath')

1 行目の #(シャープ)はコメントを表し, プログラムの挙動には一切関係ありません. 2 行目
及び 3 行目は print 関数で文字列を表示させます. 文字列は’(シングルクォーテーション)
または“(ダブルクォーテーション)で囲います. 早速コマンドラインでこの hello.sage を起
動しましょう.

$ sage hello.sage

と入力して下さい. すると以下の出力が得られます.
出力:

Hello World

Welcome to SageMath

3.1.2 変数

変数の使い方を説明します. 通常数学では変数を 1 文字で表しますが, SageMath では 2 文
字以上使っても OK です.

variable.sage

alpha = 5 # 変数アルファに5を代入する
beta = 7 # 変数ベータに7を代入する

変数αと変数βを足して表示する
Sum = alpha + beta # 変数Sumに和を代入する
print(Sum)

変数αと変数βを掛けて表示する

6 of 41

Product = alpha * beta # 変数Productに積を代入する
print(Product)

出力:

12

35

3.1.3 for ループ

for ループは同じ処理を繰り返したいときに使います. 以下の for.sage では同じ処理を 5
回繰り返します.

for.sage

for i in range(0, 5):

 print(i, "回目のHello World")

出力:

0 回目のHello World

1 回目のHello World

2 回目のHello World

3 回目のHello World

4 回目のHello World

変数 i が 0 から始まり 4 で終わっていることに注意して下さい.

3.1.4 辞書型

dict は辞書型を表し, その名の通り英和辞書のような物です. 例題として色を表す英和辞書
を作ります.

dict.sage

d = dict() # 空の辞書を作成する
英和辞書を作成する
d["blue"] = "青色"

d["red"] = "赤色"

d["green"] = "緑色"

d["yellow"] = "黄色"

辞書を引く
print("英語greenは日本語で", d["green"])

出力:

英語greenは日本語で 緑色

3.1.5 f 文字列

f 文字列を用いて数字を文字列に埋め込みます. f 文字列であることを明示するため文字列
の直前に f を付けます.

7 of 41

f-string_A.sage

x = 123.456789

浮動小数点xを文字列msgの一部に埋め込む
msg = f"変数xの値は{x}です"

print(msg)

出力

変数xの値は123.456789000000です

次に数字の文字幅を指定します.

f-string_B.sage

x = 53

空白文字を含めて5文字で表現する
print(f"変数xの値は{x:5}です")

ゼロを含めて5文字で表現する
print(f"変数xの値は{x:05}です")

出力:

変数xの値は 53です
変数xの値は00053です

次は小数点以下の桁数を指定します.

f-string_C.sage

x = 123.456789

小数点以下4桁を表示する
print(f"変数xの値は約{x:.4f}です")

出力:

変数xの値は約123.4568です

四捨五入されていることに注意して下さい.

3.1.6 フィボナッチ数

これまでやってきたことのまとめとしてフィボナッチ数を計算します. フィボナッチ数は
以下で定義される数列𝐹𝑛です.
𝐹0 = 0, 𝐹1 = 1,
𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2, 𝑛 ≥ 2

Fibonacci.sage

フィボナッチ数を計算して出力する
[1] 準備
N = 20 # 第20項まで計算する

8 of 41

[2] フィボナッチ数F[n]を計算する
F = dict() # 空の辞書を作成する
F[0] = 0

F[1] = 1

漸化式を使う
for n in range(2, N+1):

 F[n] = F[n-1] + F[n-2]

[3] フィボナッチ数F[n]を出力する
print("n, F[n]")

for n in range(0, N+1):

 print(f"{n}, {F[n]}")

出力:

n, F[n]

0, 0

1, 1

2, 1

3, 2

4, 3

5, 5

6, 8

7, 13

8, 21

9, 34

10, 55

11, 89

12, 144

13, 233

14, 377

15, 610

16, 987

17, 1597

18, 2584

19, 4181

20, 6765

ウェブサイト https://oeis.org/A000045 の結果と一致しているので Fibonacci.sage に不
具合はなさそうです.

3.1.7 高精度の浮動小数点

高精度の浮動小数点を扱いたい場合は RealField を用います.

9 of 41

https://oeis.org/A000045

RealField.sage

Rは500ビットの浮動小数点の型
R = RealField(500)

sqrt(2)を小数点以下10桁まで表示する
x = R(sqrt(2))

print(f"(square root of 2) = {x:.10f}")

出力:

(square root of 2) = 1.4142135624

3.1.8 グラフへプロット

数列を辞書型で作成しグラフへプロットします.

plot.sage

数列を辞書で表現しグラフへプロットする
[1] 数列a[n]を辞書で表現する
a = dict() # 空の辞書を作成する
a[1] = 3

a[2] = 5

a[3] = 7

a[4] = 9

a[5] = 11

[2] 数列a[n]をグラフへプロットする
plt = list_plot(a)

[3] グラフをPDFファイルで出力する
plt.save("output.pdf")

出力:

10 of 41

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

3

4

5

6

7

8

9

10

11

Figure 1: output.pdf

3.2 平方根
√
2 = 1.41421356237309504880…

方法 A,B の 2 通りの方法で
√
2を数値計算する.

3.2.1 方法 A

定理: 数列𝑎𝑛を𝑎0 = 1.5

𝑎𝑛 = 1
2
(𝑎𝑛−1 +

2
𝑎𝑛−1

), 𝑛 ≥ 1

で定める. このとき, lim𝑛→∞ 𝑎𝑛 =
√
2が成立する.

この定理を次の sqrt2_A.sage で数値計算する.

sqrt2_A.sage

sqrt(2)を計算して出力する
[1] 準備
R = RealField(500) # 500ビットの浮動小数点を使う
N = 50 # 第50項まで計算する

[2] 数列a[n]を計算する
a = dict() # 空の辞書を作成する
a[0] = R('1.5') # 初期値

漸化式を使う
for n in range(1, N+1):

 a[n] = R('0.5') * (a[n-1] + 2 / a[n-1])

[3] 数列a[n]を出力する
print("n, a[n]")

for n in range(0, N+1):

 print(f"{n:02}, {a[n]:.50f}")

11 of 41

sqrt2_A.sageの出力
n, a[n]
00, 1.5000
01, 1.416667
02, 1.41421568627450980392156862745098039215686274509804
03, 1.41421356237468991062629557889013491011655962211574
04, 1.41421356237309504880168962350253024361498192577620
05, 1.41421356237309504880168872420969807856967187537723
06, 1.41421356237309504880168872420969807856967187537695
07, 1.41421356237309504880168872420969807856967187537695
08, 1.41421356237309504880168872420969807856967187537695
09, 1.41421356237309504880168872420969807856967187537695
10, 1.41421356237309504880168872420969807856967187537695
11, 1.41421356237309504880168872420969807856967187537695
12, 1.41421356237309504880168872420969807856967187537695
13, 1.41421356237309504880168872420969807856967187537695
14, 1.41421356237309504880168872420969807856967187537695
15, 1.41421356237309504880168872420969807856967187537695
16, 1.41421356237309504880168872420969807856967187537695
17, 1.41421356237309504880168872420969807856967187537695
18, 1.41421356237309504880168872420969807856967187537695
19, 1.41421356237309504880168872420969807856967187537695
20, 1.41421356237309504880168872420969807856967187537695
21, 1.41421356237309504880168872420969807856967187537695
22, 1.41421356237309504880168872420969807856967187537695
23, 1.41421356237309504880168872420969807856967187537695
24, 1.41421356237309504880168872420969807856967187537695
25, 1.41421356237309504880168872420969807856967187537695
26, 1.41421356237309504880168872420969807856967187537695
27, 1.41421356237309504880168872420969807856967187537695
28, 1.41421356237309504880168872420969807856967187537695
29, 1.41421356237309504880168872420969807856967187537695
30, 1.41421356237309504880168872420969807856967187537695
31, 1.41421356237309504880168872420969807856967187537695
32, 1.41421356237309504880168872420969807856967187537695
33, 1.41421356237309504880168872420969807856967187537695
34, 1.41421356237309504880168872420969807856967187537695
35, 1.41421356237309504880168872420969807856967187537695
36, 1.41421356237309504880168872420969807856967187537695
37, 1.41421356237309504880168872420969807856967187537695
38, 1.41421356237309504880168872420969807856967187537695
39, 1.41421356237309504880168872420969807856967187537695
40, 1.41421356237309504880168872420969807856967187537695
41, 1.41421356237309504880168872420969807856967187537695
42, 1.41421356237309504880168872420969807856967187537695
43, 1.41421356237309504880168872420969807856967187537695
44, 1.41421356237309504880168872420969807856967187537695
45, 1.41421356237309504880168872420969807856967187537695
46, 1.41421356237309504880168872420969807856967187537695
47, 1.41421356237309504880168872420969807856967187537695
48, 1.41421356237309504880168872420969807856967187537695
49, 1.41421356237309504880168872420969807856967187537695
50, 1.41421356237309504880168872420969807856967187537695

Figure 2: sqrt2_A.sage の出力

12 of 41

数列𝑎𝑛が
√
2に収束している.

3.2.2 方法 B

定理: 数列𝑝𝑛及び𝑞𝑛を𝑝0 = 1, 𝑝1 = 3, 𝑞0 = 1, 𝑞1 = 2,

𝑝𝑛 = 2𝑝𝑛−1 + 𝑝𝑛−2, 𝑛 ≥ 2
𝑞𝑛 = 2𝑞𝑛−1 + 𝑞𝑛−2, 𝑛 ≥ 2

で定める. このときlim𝑛→∞
𝑝𝑛
𝑞𝑛

=
√
2が成立する.

この定理を次の sqrt2_B.sage で数値計算をする.

sqrt2_B.sage

sqrt(2)を計算して出力する
[1] 準備
R = RealField(500) # 500ビットの浮動小数点を使う
N = 50 # 第50項まで計算する

[2] 数列p[n]及びq[n]を計算する
p = dict() # 空の辞書を作成する
p[0] = 1 # 初期値
p[1] = 3 # 初期値
q = dict() # 空の辞書を作成する
q[0] = 1 # 初期値
q[1] = 2 # 初期値

漸化式を使う
for n in range(2, N+1):

 p[n] = 2 * p[n-1] + p[n-2]

 q[n] = 2 * q[n-1] + q[n-2]

[3] 数列p[n] / q[n] を出力する
print("n, p[n] / q[n]")

for n in range(0, N+1):

 print(f"{n:02}, {R(p[n] / q[n]):.50f}")

13 of 41

sqrt2_B.sageの出力
n, p[n] / q[n]
00, 1.00
01, 1.5000
02, 1.4000
03, 1.416667
04, 1.41379310344827586206896551724137931034482758620690
05, 1.41428571428571428571428571428571428571428571428571
06, 1.41420118343195266272189349112426035502958579881657
07, 1.41421568627450980392156862745098039215686274509804
08, 1.41421319796954314720812182741116751269035532994924
09, 1.41421362489486963835155592935239697224558452481077
10, 1.41421355164605469430412820066190559136039017592754
11, 1.41421356421356421356421356421356421356421356421356
12, 1.41421356205732046262813424583843877947461223513942
13, 1.41421356242727340249065385853284147458592260652125
14, 1.41421356236379951288296372259966670939623125240354
15, 1.41421356237468991062629557889013491011655962211574
16, 1.41421356237282141377280856945039496291421840098743
17, 1.41421356237314199715036385699345166732866653791073
18, 1.41421356237308699373851811343783173982495986103776
19, 1.41421356237309643083203725697474145371125494453443
20, 1.41421356237309481168276813841831575700656485289713
21, 1.41421356237309508948486370619374377979153884951076
22, 1.41421356237309504182155941809682959974336648671641
23, 1.41421356237309504999928957890286393934167006969415
24, 1.41421356237309504859621290216357141304731510505518
25, 1.41421356237309504883694280179329221152889970181349
26, 1.41421356237309504879564008075425994635423824014525
27, 1.41421356237309504880272650735873273890356326574411
28, 1.41421356237309504880151066877092824878177239939900
29, 1.41421356237309504880171927369328239696317778923606
30, 1.41421356237309504880168348274696199799653588139864
31, 1.41421356237309504880168962350253024361498192577620
32, 1.41421356237309504880168856991544116887094756697120
33, 1.41421356237309504880168875068240737171670767541255
34, 1.41421356237309504880168871966769922938618138356910
35, 1.41421356237309504880168872498898188052357902618842
36, 1.41421356237309504880168872407599411602971946231598
37, 1.41421356237309504880168872423263805185547920293131
38, 1.41421356237309504880168872420576220139478032311173
39, 1.41421356237309504880168872421037336833321386141391
40, 1.41421356237309504880168872420958221716331151142040
41, 1.41421356237309504880168872420971795724429207307926
42, 1.41421356237309504880168872420969466792831105311963
43, 1.41421356237309504880168872420969866374321661121855
44, 1.41421356237309504880168872420969797816976428258465
45, 1.41421356237309504880168872420969809579557269628914
46, 1.41421356237309504880168872420969807561417454269608
47, 1.41421356237309504880168872420969807907675505054997
48, 1.41421356237309504880168872420969807848267015701968
49, 1.41421356237309504880168872420969807858459901034753
50, 1.41421356237309504880168872420969807856711078391074

Figure 3: sqrt2_B.sage の出力
14 of 41

数列𝑝𝑛
𝑞𝑛

が
√
2に収束している.

3.3 対数log 2 = 0.69314718055994530941…
方法 A,B の 2 通りの方法でlog 2を数値計算する.

3.3.1 方法 A

定理: メルカトル級数

log 2 =∑
∞

𝑘=1

(−1)𝑘−1

𝑘
= 1 − 1

2
+ 1
3
− 1
4
+ 1
5
− 1
6
+ 1
7
−….

この定理を次の log2_A.sage で数値計算する. その際, 数列𝑆𝑛を𝑛 ≥ 1の範囲で

𝑆𝑛 =∑
𝑛

𝑘=1

(−1)𝑘−1

𝑘

と定義する.

log2_A.sage

log2を計算して出力する
[1] 準備
R = RealField(500) # 500ビットの浮動小数点を使う
N = 50 # 第50項まで計算する

[2] 数列S[n]を計算する
S = dict() # 空の辞書を作成する
S[0] = R('0.0') # 初期値

for n in range(1, N+1):

 S[n] = S[n-1] + (-1)^(n-1) / n

[3] 数列S[n]を出力する
print("n, S[n]")

for n in range(1, N+1):

 print(f"{n:02}, {S[n]:.50f}")

15 of 41

log2_A.sageの出力
n, S[n]
01, 1.00
02, 0.5000
03, 0.8333
04, 0.5833
05, 0.7833
06, 0.616667
07, 0.75952380952380952380952380952380952380952380952381
08, 0.63452380952380952380952380952380952380952380952381
09, 0.74563492063492063492063492063492063492063492063492
10, 0.64563492063492063492063492063492063492063492063492
11, 0.73654401154401154401154401154401154401154401154401
12, 0.65321067821067821067821067821067821067821067821068
13, 0.73013375513375513375513375513375513375513375513376
14, 0.65870518370518370518370518370518370518370518370518
15, 0.72537185037185037185037185037185037185037185037185
16, 0.66287185037185037185037185037185037185037185037185
17, 0.72169537978361507773272479154832096008566596801891
18, 0.66613982422805952217716923599276540453011041246335
19, 0.71877140317542794322980081494013382558274199141072
20, 0.66877140317542794322980081494013382558274199141072
21, 0.71639045079447556227741986255918144463036103902977
22, 0.67093590533993010773196531710463599008490649357522
23, 0.71441416620949532512326966493072294660664562401001
24, 0.67274749954282865845660299826405627993997895734334
25, 0.71274749954282865845660299826405627993997895734334
26, 0.67428596108129019691814145980251781840151741888180
27, 0.71132299811832723395517849683955485543855445591884
28, 0.67560871240404151966946421112526914115284017020455
29, 0.71009147102473117484187800422871741701490913572179
30, 0.67675813769139784150854467089538408368157580238846
31, 0.70901620220752687376660918702441634174609193142072
32, 0.67776620220752687376660918702441634174609193142072
33, 0.70806923251055717679691221732744664477639496172375
34, 0.67865746780467482385573574673921135065874790290022
35, 0.70722889637610339528430717531063992208731933147165
36, 0.67945111859832561750652939753286214430954155369387
37, 0.70647814562535264453355642455988917133656858072090
38, 0.68016235615166843400724063508620496081025279124721
39, 0.70580338179269407503288166072723060183589381688824
40, 0.68080338179269407503288166072723060183589381688824
41, 0.70519362569513309942312556316625499207979625591263
42, 0.68138410188560928989931603935673118255598673210311
43, 0.70463991583909766199233929517068467092807975535892
44, 0.68191264311182493471961202244341194365535248263165
45, 0.70413486533404715694183424466563416587757470485387
46, 0.68239573489926454824618207075259068761670513963648
47, 0.70367233064394539931001185798663324080819450133861
48, 0.68283899731061206597667852465329990747486116800527
49, 0.70324716057591818842565811649003460135241218841344
50, 0.68324716057591818842565811649003460135241218841344

Figure 4: log2_A.sage の出力

16 of 41

数列𝑆𝑛の収束が遅すぎる. 追加実験すると

𝑆[100] = 0.68817217931019520324464588269348406593837030274100
𝑆[1000] = 0.69264743055982030966723105896592648170186535531202
𝑆[10000] = 0.69309718305994529691723237145816594307627513427388

𝑆[105] = 0.69314218058494530941598212145842656807539388436033

𝑆[106] = 0.69314668056019530941723199645817656832550013435919

となる. log 2に収束していることが分かる.

3.3.2 方法 B

定理:

log 2 =∑
∞

𝑘=1

1
𝑘 ⋅ 2𝑘

= 1
1 ⋅ 21

+ 1
2 ⋅ 22

+ 1
3 ⋅ 23

+ 1
4 ⋅ 24

+ 1
5 ⋅ 25

+ 1
6 ⋅ 26

+ 1
7 ⋅ 27

+….

この定理を log2_B.sage で数値計算をする. その際, 数列𝑆𝑛を𝑛 ≥ 1の範囲で

𝑆𝑛 =∑
𝑛

𝑘=1

1
𝑘 ⋅ 2𝑘

と定義する.

log2_B.sage

log2を計算して出力する
[1] 準備
R = RealField(500) # 500ビットの浮動小数点を使う
N = 50 # 第50項まで計算する

[2] 数列S[n]を計算する
S = dict() # 空の辞書を作成する
S[0] = R('0.0') # 初期値

for n in range(1, N+1):

 S[n] = S[n-1] + 1 / (n * 2^n)

[3] 数列S[n]を出力する
print("n, S[n]")

for n in range(1, N+1):

 print(f"{n:02}, {S[n]:.50f}")

17 of 41

log2_B.sageの出力
n, S[n]
01, 0.5000
02, 0.625000
03, 0.6667
04, 0.6822916667
05, 0.6885416667
06, 0.6911458333
07, 0.69226190476190476190476190476190476190476190476190
08, 0.69275018601190476190476190476190476190476190476190
09, 0.69296719990079365079365079365079365079365079365079
10, 0.69306485615079365079365079365079365079365079365079
11, 0.69310924535533910533910533910533910533910533910534
12, 0.69312959040742243867243867243867243867243867243867
13, 0.69313898043146090021090021090021090021090021090021
14, 0.69314334008547875735375735375735375735375735375735
15, 0.69314537459068709068709068709068709068709068709069
16, 0.69314632826500349693709068709068709068709068709069
17, 0.69314677705291709987826715767892238480473774591422
18, 0.69314698898054296793382271323447794036029330146977
19, 0.69314708936731311596013850270816215088660909094346
20, 0.69314713705102893627263850270816215088660909094346
21, 0.69314715975756027927859088366054310326756147189584
22, 0.69314717059476842025870452002417946690392510825947
23, 0.69314717577778100942310669393722294516479467347686
24, 0.69314717826130787506438273560388961183146134014353
25, 0.69314717945340077057219523560388961183146134014353
26, 0.69314718002652235495095124521927422721607672475892
27, 0.69314718030246978446664858318223719017903968772188
28, 0.69314718043551586655457408541438004732189683057902
29, 0.69314718049974500963150363821610418525293131333764
30, 0.69314718053078909545201958873693751858626464667098
31, 0.69314718054581042730065633898895364761852271118711
32, 0.69314718055308638491483976489227396011852271118711
33, 0.69314718055661412193989839563327774799731058997498
34, 0.69314718055832611196676508408111782152672235468087
35, 0.69314718055915764997981461847006871438386521182372
36, 0.69314718055956186984726925324247539841164298960150
37, 0.69314718055975851735035529178040297442515650311501
38, 0.69314718055985425363475244212123613643173545048344
39, 0.69314718055990089438868951536420613843494057868856
40, 0.69314718055992363175623383857015401441150307868856
41, 0.69314718055993472315503594745110419781470429820076
42, 0.69314718055994013681397507202394893019007632201028
43, 0.69314718055994278069392208635022193902456033363819
44, 0.69314718055994407258980528653237806834141047568364
45, 0.69314718055994470418334818439920995378520387846142
46, 0.69314718055994501311497242792102989775227673851577
47, 0.69314718055994516429427790879340987033190813811683
48, 0.69314718055994523830914621713717923190735267750485
49, 0.69314718055994527456132661306065810288308061516429
50, 0.69314718055994529232489500706316274966118730461742

Figure 5: log2_B.sage の出力

18 of 41

数列𝑆𝑛がlog 2に収束している.

3.4 ネイピア数𝑒 = 2.71828182845904523536…
方法 A,B,C,D の 4 通りの方法でネイピア数𝑒を数値計算する.

3.4.1 方法 A

定義 ネイピア数𝑒を

𝑒 = lim
𝑛→∞

(1 + 1
𝑛
)
𝑛

で定義する.

この定義式を e_A.sage で数値計算をする. その際, 数列𝑎𝑛を𝑛 ≥ 1の範囲で

𝑎𝑛 = (1 + 1
𝑛
)
𝑛

と定義する.

e_A.sage

ネイピア数eを計算して出力する
[1] 準備
R = RealField(500) # 500ビットの浮動小数点を使う
N = 50 # 第50項まで計算する

[2] 数列a[n]を計算する
a = dict() # 空の辞書を作成する

for n in range(1, N+1):

 a[n] = R((1+1/n)^n)

[3] 数列a[n]を出力する
print("n, a[n]")

for n in range(1, N+1):

 print(f"{n:02}, {a[n]:.50f}")

19 of 41

e_A.sageの出力
n, a[n]
01, 2.00
02, 2.2500
03, 2.37037037037037037037037037037037037037037037037037
04, 2.4414062500
05, 2.48832000
06, 2.52162637174211248285322359396433470507544581618656
07, 2.54649969704071311394790557384374586390753124002025
08, 2.56578451395034790039062500000000000000000000000000
09, 2.58117479171319718199003150811675321590954886229572
10, 2.593742460100
11, 2.60419901189753087818177445539096177789055159821844
12, 2.61303529022467816029953304435487664670207981695052
13, 2.62060088788573222107930994787374649880248003890004
14, 2.62715155630086938838423671210905522161211896496985
15, 2.63287871772791904704434978915118761310530481520300
16, 2.63792849736659985876311221297818576658755773678422
17, 2.64241437518310962025748571165868444689568800360620
18, 2.64642582109768546734906052705178601680081924000858
19, 2.65003432664044490726326761293000997580623492728399
20, 2.65329770514442013394543076515197753906250000000000
21, 2.65626321392610498553839835724292408996185225549230
22, 2.65896985853778820292135370013601083239394952067529
23, 2.66145011863878145449554690440882528345807953086098
24, 2.66373125806859403674053995595573090127952974726653
25, 2.66583633148741999304064003395197815283391475482624
26, 2.66778496653374088402300696133001330114858555794032
27, 2.66959397781257440882230821941700530197266032581136
28, 2.67127785344083964035778652207373726742824536048951
29, 2.67284914398080136275371489113360886355002954174394
30, 2.67431877587029459606443544485556782143840834421502
31, 2.67569630591468788367829401055352740333228468444972
32, 2.67699012937818268464232694941240239933386225914797
33, 2.67820765125378122486641328801123406922079342495148
34, 2.67935542809577666465234800316016105172227635556575
35, 2.68043928615346966169662222064309417895717247995140
36, 2.68146442030086770591975397002982228669252820194201
37, 2.68243547730853077912402988555305617352125478655550
38, 2.68335662627457065365180769920603379785217703500825
39, 2.68423161846710132789685305302730092774333006257187
40, 2.68506383838997273151870974906239290842722395665831
41, 2.68585634753775013296425496599179535087200275569961
42, 2.68661192203258032104118206750123504095487728235641
43, 2.68733308511828906602495660731201554865801873510154
44, 2.68802213531330666978147570915270938656194364325099
45, 2.68868117088433318170753079502233716855836634131341
46, 2.68931211118977036489467334455884553792728900101036
47, 2.68991671535026943079585041113090559355953015886614
48, 2.69049659862893587934304421737731458083012399661420
49, 2.69105324684241515875622406370842286798289664414970
50, 2.69158802907360539389408735515325948522882827640789

Figure 6: e_A.sage の出力

20 of 41

数列𝑎𝑛の収束が遅すぎる. 追加実験すると

𝑎[100] = 2.70481382942152609326719471080753083367793838278100
𝑎[1000] = 2.71692393223589245738308812194757718896431501883657
𝑎[10000] = 2.71814592682522486403766467491314653611382264922072

𝑎[105] = 2.71826823717448966803506482442604644797444693267782

𝑎[106] = 2.71828046931937688381979970845435639275164502668251

𝑎[107] = 2.71828169254496627119855022577781327315350827128440

𝑎[108] = 2.71828181486763621765297724300917669215323842678064

𝑎[109] = 2.71828182709990432237664402386033286282501316408962

𝑎[1010] = 2.71828182832313114394979400129722949988517993388397

𝑎[1011] = 2.71828182844545382621811683309299757739213785510263

𝑎[1012] = 2.71828182845768609444605919461415372989472200263316

𝑎[1013] = 2.71828182845890932126886453154968619715311420767644

𝑎[1014] = 2.71828182845903164395114517625107361345759538109318

𝑎[1015] = 2.71828182845904387621937324183129069678488847857900

となる. ネイピア数𝑒に収束していることが分かる.

3.4.2 方法 B

定理:

𝑒 =∑
∞

𝑘=0

1
𝑘!

= 1 + 1
1!
+ 1
2!
+ 1
3!
+ 1
4!
+ 1
5!
+ 1
6!
+ 1
7!
+ ….

この定理を次の e_B.sage で数値計算をする. その際, 数列𝑓𝑛及び𝑆𝑛を𝑛 ≥ 0の範囲で

𝑓𝑛 = 𝑛!, 𝑆𝑛 =∑
𝑛

𝑘=0

1
𝑘!

と定義する.

e_B.sage

ネイピア数eを計算して出力する
[1] 準備
R = RealField(500) # 500ビットの浮動小数点を使う
N = 50 # 第50項まで計算する

[2] 数列S[n]を計算する
f = dict() # 空の辞書を作成する
f[0] = R('1.0') # 初期値
S = dict() # 空の辞書を作成する
S[0] = R('1.0') # 初期値

21 of 41

for n in range(1, N+1):

 f[n] = n * f[n-1]

 S[n] = S[n-1] + 1 / f[n]

[3] 数列S[n]を出力する
print("n, S[n]")

for n in range(1, N+1):

 print(f"{n:02}, {S[n]:.50f}")

22 of 41

e_B.sageの出力
n, S[n]
01, 2.00
02, 2.5000
03, 2.6667
04, 2.708333
05, 2.716667
06, 2.71805556
07, 2.71825396825396825396825396825396825396825396825397
08, 2.71827876984126984126984126984126984126984126984127
09, 2.71828152557319223985890652557319223985890652557319
10, 2.71828180114638447971781305114638447971781305114638
11, 2.71828182619849286515953182619849286515953182619849
12, 2.71828182828616856394634172411950189727967505745284
13, 2.71828182844675900231455787011342566898122453678009
14, 2.71828182845822974791228759482727736695990664244632
15, 2.71828182845899446428546957647486748015848544949074
16, 2.71828182845904225905879345032784186223339662493102
17, 2.71828182845904507051604779584860506117897963525103
18, 2.71828182845904522670811748171086968334262313582437
19, 2.71828182845904523492875272833519940029860437269665
20, 2.71828182845904523533978449066641588614640343454026
21, 2.71828182845904523535935743172980714737725100891377
22, 2.71828182845904523536024711086905220470592589865802
23, 2.71828182845904523536028579257075851154630306777733
24, 2.71828182845904523536028740430832960766465211649064
25, 2.71828182845904523536028746877783245150938607843917
26, 2.71828182845904523536028747125742871473418353851411
27, 2.71828182845904523536028747134926561337213899999837
28, 2.71828182845904523536028747135254550260920883790852
29, 2.71828182845904523536028747135265860223807331507784
30, 2.71828182845904523536028747135266237222570213098348
31, 2.71828182845904523536028747135266249383820628633528
32, 2.71828182845904523536028747135266249763859704119002
33, 2.71828182845904523536028747135266249775376039739774
34, 2.71828182845904523536028747135266249775714755493326
35, 2.71828182845904523536028747135266249775724433086285
36, 2.71828182845904523536028747135266249775724701908311
37, 2.71828182845904523536028747135266249775724709173772
38, 2.71828182845904523536028747135266249775724709364968
39, 2.71828182845904523536028747135266249775724709369870
40, 2.71828182845904523536028747135266249775724709369993
41, 2.71828182845904523536028747135266249775724709369996
42, 2.71828182845904523536028747135266249775724709369996
43, 2.71828182845904523536028747135266249775724709369996
44, 2.71828182845904523536028747135266249775724709369996
45, 2.71828182845904523536028747135266249775724709369996
46, 2.71828182845904523536028747135266249775724709369996
47, 2.71828182845904523536028747135266249775724709369996
48, 2.71828182845904523536028747135266249775724709369996
49, 2.71828182845904523536028747135266249775724709369996
50, 2.71828182845904523536028747135266249775724709369996

Figure 7: e_B.sage の出力

23 of 41

e_A.sage より収束が速い.

3.4.3 方法 C

定理:

𝑒 = 1
∑∞

𝑘=0
(−1)𝑘
𝑘!

.

この定理を次の e_C.sage で数値計算する. その際, 数列𝑓𝑛, 𝐴𝑛及び𝑆𝑛を𝑛 ≥ 0の範囲で

𝑓𝑛 = 𝑛!, 𝐴𝑛 =∑
𝑛

𝑘=0

(−1)𝑘

𝑘!
, 𝑆𝑛 = 1

𝐴𝑛

と定義する.

e_C.sage

ネイピア数eを計算して出力する
[1] 準備
R = RealField(500) # 500ビットの浮動小数点を使う
N = 50 # 第50項まで計算する

[2] 数列S[n]を計算する
f = dict() # 空の辞書を作成する
f[0] = R('1.0') # 初期値
A = dict() # 空の辞書を作成する
A[0] = R('1.0') # 初期値
S = dict() # 空の辞書を作成する
S[0] = R('1.0') # 初期値

for n in range(1, N+1):

 f[n] = n * f[n-1]

 A[n] = A[n-1] + (-1)^n / f[n]

 S[n] = 1 / A[n]

[3] 数列S[n]を出力する
print("n, S[n]")

for n in range(1, N+1):

 print(f"{n:02}, {S[n]:.50f}")

24 of 41

e_C.sageの出力
n, S[n]
01, Infinity
02, 2.00
03, 3.00
04, 2.6667
05, 2.7273
06, 2.71698113207547169811320754716981132075471698113208
07, 2.71844660194174757281553398058252427184466019417476
08, 2.71826333176026427560169891458235016517225106182161
09, 2.71828369389344999101096662072271828369389344999101
10, 2.71828165766640373763727929130513925125902554456647
11, 2.71828184277782733849203619854037264965879150700361
12, 2.71828182735187440880759867439315170962246023307424
13, 2.71828182853848616641357788159964516600839590856569
14, 2.71828182845372818369307991637203487643814570178089
15, 2.71828182845937871587428200557313162382403894420537
16, 2.71828182845902555761295618676502426936283306326329
17, 2.71828182845904633162832829121354531998384121603857
18, 2.71828182845904517751636317429140849280931399446911
19, 2.71828182845904523825909818044518073549121912884191
20, 2.71828182845904523522196143013749205888264910411379
21, 2.71828182845904523536658698967595342428154276021909
22, 2.71828182845904523536001310060602336221762282096983
23, 2.71828182845904523536029892186993336491605346150003
24, 2.71828182845904523536028701265060378147028551694455
25, 2.71828182845904523536028748901937696480811623472477
26, 2.71828182845904523536028747069750107314127659173322
27, 2.71828182845904523536028747137608906912893731925142
28, 2.71828182845904523536028747135185378355794943612577
29, 2.71828182845904523536028747135268948306039729416459
30, 2.71828182845904523536028747135266162641031569889663
31, 2.71828182845904523536028747135266252501193123422785
32, 2.71828182845904523536028747135266249693063074874875
33, 2.71828182845904523536028747135266249778157924830872
34, 2.71828182845904523536028747135266249775655135126284
35, 2.71828182845904523536028747135266249775726643403558
36, 2.71828182845904523536028747135266249775724657062523
37, 2.71828182845904523536028747135266249775724710747416
38, 2.71828182845904523536028747135266249775724709334655
39, 2.71828182845904523536028747135266249775724709370880
40, 2.71828182845904523536028747135266249775724709369974
41, 2.71828182845904523536028747135266249775724709369996
42, 2.71828182845904523536028747135266249775724709369996
43, 2.71828182845904523536028747135266249775724709369996
44, 2.71828182845904523536028747135266249775724709369996
45, 2.71828182845904523536028747135266249775724709369996
46, 2.71828182845904523536028747135266249775724709369996
47, 2.71828182845904523536028747135266249775724709369996
48, 2.71828182845904523536028747135266249775724709369996
49, 2.71828182845904523536028747135266249775724709369996
50, 2.71828182845904523536028747135266249775724709369996

Figure 8: e_C.sage の出力

25 of 41

3.4.4 方法 D

定理: 数列𝑝𝑛及び𝑞𝑛を𝑝0 = 1, 𝑝1 = 3, 𝑞0 = 1, 𝑞1 = 1

𝑝𝑛 = 2(2𝑛 − 1)𝑝𝑛−1 + 𝑝𝑛−2, 𝑛 ≥ 2
𝑞𝑛 = 2(2𝑛 − 1)𝑞𝑛−1 + 𝑞𝑛−2, 𝑛 ≥ 2

で定める. このときlim𝑛→∞
𝑝𝑛
𝑞𝑛

= 𝑒が成立する.

この定理を次の e_D.sage で数値計算をする.

e_D.sage

ネイピア数eを計算して出力する
[1] 準備
R = RealField(500) # 500ビットの浮動小数点を使う
N = 50 # 第50項まで計算する

[2] 数列p[n]及びq[n]を計算する
p = dict() # 空の辞書を作成する
p[0] = 1 # 初期値
p[1] = 3 # 初期値
q = dict() # 空の辞書を作成する
q[0] = 1 # 初期値
q[1] = 1 # 初期値

漸化式を使う
for n in range(2, N+1):

 p[n] = 2 * (2*n - 1) * p[n-1] + p[n-2]

 q[n] = 2 * (2*n - 1) * q[n-1] + q[n-2]

[3] 数列p[n] / q[n] を出力する
print("n, p[n] / q[n]")

for n in range(0, N+1):

 print(f"{n:02}, {R(p[n] / q[n]):.50f}")

26 of 41

e_D.sageの出力
n, p[n] / q[n]
00, 1.00
01, 3.00
02, 2.71428571428571428571428571428571428571428571428571
03, 2.71830985915492957746478873239436619718309859154930
04, 2.71828171828171828171828171828171828171828171828172
05, 2.71828182873569572668472552379899386367405605616673
06, 2.71828182845856341127785060620264237678558448361862
07, 2.71828182845904585140462108494996113472176897308379
08, 2.71828182845904523475756063147977332970377319073588
09, 2.71828182845904523536075323018848069263338394670075
10, 2.71828182845904523536028717990008625935174427034809
11, 2.71828182845904523536028747150335798417095820512307
12, 2.71828182845904523536028747135259703609205685078532
13, 2.71828182845904523536028747135266252198404387265933
14, 2.71828182845904523536028747135266249774951685744001
15, 2.71828182845904523536028747135266249775724924216553
16, 2.71828182845904523536028747135266249775724709317518
17, 2.71828182845904523536028747135266249775724709370007
18, 2.71828182845904523536028747135266249775724709369996
19, 2.71828182845904523536028747135266249775724709369996
20, 2.71828182845904523536028747135266249775724709369996
21, 2.71828182845904523536028747135266249775724709369996
22, 2.71828182845904523536028747135266249775724709369996
23, 2.71828182845904523536028747135266249775724709369996
24, 2.71828182845904523536028747135266249775724709369996
25, 2.71828182845904523536028747135266249775724709369996
26, 2.71828182845904523536028747135266249775724709369996
27, 2.71828182845904523536028747135266249775724709369996
28, 2.71828182845904523536028747135266249775724709369996
29, 2.71828182845904523536028747135266249775724709369996
30, 2.71828182845904523536028747135266249775724709369996
31, 2.71828182845904523536028747135266249775724709369996
32, 2.71828182845904523536028747135266249775724709369996
33, 2.71828182845904523536028747135266249775724709369996
34, 2.71828182845904523536028747135266249775724709369996
35, 2.71828182845904523536028747135266249775724709369996
36, 2.71828182845904523536028747135266249775724709369996
37, 2.71828182845904523536028747135266249775724709369996
38, 2.71828182845904523536028747135266249775724709369996
39, 2.71828182845904523536028747135266249775724709369996
40, 2.71828182845904523536028747135266249775724709369996
41, 2.71828182845904523536028747135266249775724709369996
42, 2.71828182845904523536028747135266249775724709369996
43, 2.71828182845904523536028747135266249775724709369996
44, 2.71828182845904523536028747135266249775724709369996
45, 2.71828182845904523536028747135266249775724709369996
46, 2.71828182845904523536028747135266249775724709369996
47, 2.71828182845904523536028747135266249775724709369996
48, 2.71828182845904523536028747135266249775724709369996
49, 2.71828182845904523536028747135266249775724709369996
50, 2.71828182845904523536028747135266249775724709369996

Figure 9: e_D.sage の出力

27 of 41

3.5 円周率𝜋 = 3.14159265358979323846…
方法 A,B,C,D,E,F の 6 通りの方法で円周率𝜋を数値計算する.

3.5.1 方法 A

定理: ライプニッツ級数

𝜋 = 4∑
∞

𝑘=0

(−1)𝑘

2𝑘 + 1
= 4(1 − 1

3
+ 1
5
− 1
7
+ 1
9
− 1
11

+ 1
13

−…).

この定理を次の pi_A.sage で数値計算をする. その際, 数列𝐴𝑛及び𝑆𝑛を𝑛 ≥ 0の範囲で

𝐴𝑛 =∑
𝑛

𝑘=0

(−1)𝑘

2𝑘 + 1
, 𝑆𝑛 = 4𝐴𝑛

と定義する.

pi_A.sage

円周率πを計算して出力する
[1] 準備
R = RealField(500) # 500ビットの浮動小数点を使う
N = 50 # 第50項まで計算する

[2] 数列S[n]を計算する
A = dict() # 空の辞書を作成する
A[0] = R('1.0') # 初期値
S = dict() # 空の辞書を作成する
S[0] = 4 * A[0] # 初期値

for n in range(1, N+1):

 A[n] = A[n-1] + (-1)^n / (2*n + 1)

 S[n] = 4 * A[n]

[3] 数列S[n]を出力する
print("n, S[n]")

for n in range(0, N+1):

 print(f"{n:02}, {S[n]:.50f}")

28 of 41

pi_A.sageの出力
n, S[n]
00, 4.00
01, 2.6667
02, 3.4667
03, 2.89523809523809523809523809523809523809523809523810
04, 3.33968253968253968253968253968253968253968253968254
05, 2.97604617604617604617604617604617604617604617604618
06, 3.28373848373848373848373848373848373848373848373848
07, 3.01707181707181707181707181707181707181707181707182
08, 3.25236593471887589534648358177769942475824828766005
09, 3.04183961892940221113595726598822574054772197187058
10, 3.23231580940559268732643345646441621673819816234677
11, 3.05840276592733181776121606516006839065124164060764
12, 3.21840276592733181776121606516006839065124164060764
13, 3.07025461777918366961306791701192024250309349245949
14, 3.20818565226194229030272308942571334595136935452846
15, 3.07915339419742616127046502490958431369330483839942
16, 3.20036551540954737339167714612170552581451695961155
17, 3.08607980112383308767739143183599124010023124532583
18, 3.19418790923194119578549953994409934820833935343394
19, 3.09162380666783863168293543737999678410577525086984
20, 3.18918478227759472924391104713609434508138500696740
21, 3.09616152646364124087181802388028039159301291394414
22, 3.18505041535253012976070691276916928048190180283303
23, 3.09994403237380672550538776383299906771594435602452
24, 3.18157668543503121530130613117993784322614843765717
25, 3.10314531288601160745816887627797705891242294746109
26, 3.17861701099921915462798019703269404004449841915921
27, 3.10588973827194642735525292430542131277177114643193
28, 3.17606517686843765542542836290191254084194658502843
29, 3.10826856669894613000169954934259050694364150028266
30, 3.17384233719074940869022413950652493317314969700397
31, 3.11035027369868591662673207601446144110965763351191
32, 3.17188873523714745508827053755292297957119609505037
33, 3.11218724269983402225244964203053491986970355773694
34, 3.17015825719258764544085543913198419523202239831665
35, 3.11382022902357356093381318561085743466864211662651
36, 3.16861474957151876641326524040537798261384759607856
37, 3.11528141623818543307993190707204464928051426274523
38, 3.16722946818623738113187995902009659733246231469328
39, 3.11659655679383231784074071851376748340841168178189
40, 3.16597927284321503389012343456315019945779439783127
41, 3.11778650175887768449253307311736706692767391590356
42, 3.16484532528828944919841542605854353751590921002121
43, 3.11886831379403657563519703525394583636648392266489
44, 3.16381213401875567675879254087192336445637156311433
45, 3.11985609006271172071483649691587940841241551915828
46, 3.16286684275088376372558918508792241916510369120129
47, 3.12076157959298902688348392193002768232299842804340
48, 3.16199869299505088255358701471353283696217368577536
49, 3.12159465259101047851318297430949243292176964537132
50, 3.16119861298705008247357901391345282896137360576736

Figure 10: pi_A.sage の出力

29 of 41

数列𝑆𝑛の収束が遅すぎる. 追加実験すると

𝑆[100] = 3.15149340107099057525268787011771653630355189684439
𝑆[1000] = 3.14259165433954305090112773725220456615353825631696
𝑆[10000] = 3.14169264359054321346076832087794022254482575213871

𝑆[105] = 3.14160265348979398846014336452944039404091783147276

𝑆[106] = 3.14159365358879323921264313327931538413467038375009

となる. 円周率𝜋に収束していることが分かる.

3.5.2 方法 B

定理:

𝜋 = 2
√
3∑

∞

𝑘=0

(−1)𝑘

(2𝑘 + 1) ⋅ 3𝑘

= 2
√
3(1 − 1

3 ⋅ 31
+ 1
5 ⋅ 32

− 1
7 ⋅ 33

+ 1
9 ⋅ 34

− 1
11 ⋅ 35

+ 1
13 ⋅ 36

−…).

この定理を次の pi_B.sage で数値計算する. その際, 数列𝐴𝑛及び𝑆𝑛を𝑛 ≥ 0の範囲で

𝐴𝑛 =∑
𝑛

𝑘=0

(−1)𝑘

(2𝑘 + 1) ⋅ 3𝑘
, 𝑆𝑛 = 2

√
3𝐴𝑛

と定義する.

pi_B.sage

円周率πを計算して出力する
[1] 準備
R = RealField(500) # 500ビットの浮動小数点を使う
N = 50 # 第50項まで計算する

[2] 数列S[n]を計算する
A = dict() # 空の辞書を作成する
A[0] = R('1.0') # 初期値
S = dict() # 空の辞書を作成する
S[0] = 2 * R(sqrt(3)) * A[0] # 初期値

for n in range(1, N+1):

 A[n] = A[n-1] + (-1)^n / ((2*n + 1) * 3^n)

 S[n] = 2 * R(sqrt(3)) * A[n]

[3] 数列S[n]を出力する
print("n, S[n]")

for n in range(0, N+1):

 print(f"{n:02}, {S[n]:.50f}")

30 of 41

pi_B.sageの出力
n, S[n]
00, 3.46410161513775458705489268301174473388561050762076
01, 3.07920143567800407738212682934377309678720934010734
02, 3.15618147156995417931668000007736742420688957361003
03, 3.13785289159568034552273876895032115577363237515701
04, 3.14260474566308467280264945850177759573781016734853
05, 3.14130878546288349263540108862410765756576167856902
06, 3.14167431269883767165693268012806584525531381642991
07, 3.14156871594178424216182355369358903547833208771454
08, 3.14159977381150583907214976735078809717744436086612
09, 3.14159051093808009964275422994425504368823543729460
10, 3.14159330450308151312146082059066977410561590630823
11, 3.14159245428764630032359359735045659528293489399974
12, 3.14159271502037976558160621247745530345522373777434
13, 3.14159263454731388124271343003085076389587532920193
14, 3.14159265952171363845133532803152113824188000772440
15, 3.14159265173399758512821667166572069892968500044320
16, 3.14159265417257533919909221052773901831027131585449
17, 3.14159265340616518791967418402824754650494418815380
18, 3.14159265364782604643120239058214125383094823742879
19, 3.14159265357140338177371056457791845749708370902559
20, 3.14159265359563495837242748501828178316391880339734
21, 3.14159265358793344953097482038219731531632005247298
22, 3.14159265359038652271751159504406125692703669165629
23, 3.14159265358960362701968070951367914790233989191694
24, 3.14159265358985394061014364570366526439322934489483
25, 3.14159265358977377481973394718530369767392487956204
26, 3.14159265358979948837514837878553287945181499108388
27, 3.14159265358979122886946980378667138469891695526171
28, 3.14159265358979388543562373141788414616914731766065
29, 3.14159265358979302993126907675698512128890364163388
30, 3.14159265358979330574961292716678316756176908909606
31, 3.14159265358979321672887761036785363939962733092044
32, 3.14159265358979324548942286656443087157508851433102
33, 3.14159265358979323618874902749588599549844683810372
34, 3.14159265358979323919911205753256477181310863668937
35, 3.14159265358979323822392403371786601328864073010528
36, 3.14159265358979323854008088162126150121209836192021
37, 3.14159265358979323843750554874593763179693210804248
38, 3.14159265358979323847080922825091291407458348917162
39, 3.14159265358979323845998904545815723164682333580899
40, 3.14159265358979323846350671805333294733321449677873
41, 3.14159265358979323846236241491996253379667761308978
42, 3.14159265358979323846273487437121643310464844189834
43, 3.14159265358979323846261357531621037394304874669248
44, 3.14159265358979323846265309972739212355750257996181
45, 3.14159265358979323846264021447979074730956708120368
46, 3.14159265358979323846264441719495822128290805033267
47, 3.14159265358979323846264304578264041398634415514321
48, 3.14159265358979323846264349349456547135120178415695
49, 3.14159265358979323846264334727215223712766242383933
50, 3.14159265358979323846264339504779220474525449206192

Figure 11: pi_B.sage の出力

31 of 41

数列𝑆𝑛が円周率𝜋に収束している.

3.5.3 方法 C

定理:

𝜋 = 4∑
∞

𝑘=0

(−1)𝑘

2𝑘 + 1
{(1

2
)
2𝑘+1

+ (1
3
)
2𝑘+1

}.

この定理を次の pi_C.sage で数値計算する. その際数列𝐴𝑛及び𝑆𝑛を𝑛 ≥ 0の範囲で

𝐴𝑛 =∑
𝑛

𝑘=0

(−1)𝑘

2𝑘 + 1
{(1

2
)
2𝑘+1

+ (1
3
)
2𝑘+1

}, 𝑆𝑛 = 4𝐴𝑛

と定義する.

pi_C.sage

円周率πを計算して出力する
[1] 準備
R = RealField(500) # 500ビットの浮動小数点を使う
N = 50 # 第50項まで計算する

[2] 数列S[n]を計算する
A = dict() # 空の辞書を作成する
A[0] = R(1/2 + 1/3) # 初期値
S = dict() # 空の辞書を作成する
S[0] = 4 * A[0] # 初期値

for n in range(1, N+1):

 A[n] = A[n-1] + (-1)^n / (2*n + 1) * ((1/2)^(2*n+1) + (1/3)^(2*n+1))

 S[n] = 4 * A[n]

[3] 数列S[n]を出力する
print("n, S[n]")

for n in range(0, N+1):

 print(f"{n:02}, {S[n]:.50f}")

32 of 41

pi_C.sageの出力
n, S[n]
00, 3.33
01, 3.11728395061728395061728395061728395061728395061728
02, 3.14557613168724279835390946502057613168724279835391
03, 3.14085056176105558821608204324253706969756352472402
04, 3.14174119743368905082058564759372563061025185701302
05, 3.14156158787759105927068127952139535739596705912816
06, 3.14159934096619856274973211754528965658705366405751
07, 3.14159118436090672908137907388372946481309717617542
08, 3.14159298133456687617304767293551641171904062269981
09, 3.14159257960635121096510401104147911290382987070616
10, 3.14159267045068592896219887652289026992758121614467
11, 3.14159264971678824735077862446922053902179001684898
12, 3.14159265448534866704397380579026233373660422833254
13, 3.14159265338153952123818597849385885691409247817991
14, 3.14159265363845810331242127336743316294554005386620
15, 3.14159265357837256701741192316104013472004908721780
16, 3.14159265359248353692207180917269226897927541706999
17, 3.14159265358915738258560053834523148983465805552992
18, 3.14159265358994397283803346025822708599099921965575
19, 3.14159265358975740979697666470182412695884929637183
20, 3.14159265358980177539485998261260696108589224219317
21, 3.14159265358979119987478853983499227427228756317851
22, 3.14159265358979372624899021914261234447574204144426
23, 3.14159265358979312153176509481901878092016528695972
24, 3.14159265358979326654048701964491037058757001795071
25, 3.14159265358979323170996072047776219785825372918138
26, 3.14159265358979324008900241965561888057619600781634
27, 3.14159265358979323807041510173843772018050555364854
28, 3.14159265358979323855735502486434323942946643764577
29, 3.14159265358979323843974665360688042118948666360494
30, 3.14159265358979323846818474337750763748860948523585
31, 3.14159265358979323846130092006008388252871284022487
32, 3.14159265358979323846296892340237524796371662661141
33, 3.14159265358979323846256437035293971428622711132910
34, 3.14159265358979323846266257707146202148422152425010
35, 3.14159265358979323846263871698844076608507864832435
36, 3.14159265358979323846264451858396990593924427236846
37, 3.14159265358979323846264310686239114868433166754360
38, 3.14159265358979323846264345062576259930272477690471
39, 3.14159265358979323846264336686063727747610977792138
40, 3.14159265358979323846264338728484993310653410389363
41, 3.14159265358979323846264338230183419483527097460009
42, 3.14159265358979323846264338351827627211913651254256
43, 3.14159265358979323846264338322115679921934194686725
44, 3.14159265358979323846264338329376745692238161074168
45, 3.14159265358979323846264338327601375215433070601367
46, 3.14159265358979323846264338328035672832070874968404
47, 3.14159265358979323846264338327929384204841096533690
48, 3.14159265358979323846264338327955408482126738160476
49, 3.14159265358979323846264338327949033848549194630712
50, 3.14159265358979323846264338327950595949351612475874

Figure 12: pi_C.sage の出力
33 of 41

数列𝑆𝑛が円周率𝜋に収束している.

3.5.4 方法 D

定理: オイラー

𝜋 = 2∑
∞

𝑘=0

2𝑘(𝑘!)2

(2𝑘 + 1)!

= 2(1 + 1
3
+ 1 ⋅ 2
3 ⋅ 5

+ 1 ⋅ 2 ⋅ 3
3 ⋅ 5 ⋅ 7

+ 1 ⋅ 2 ⋅ 3 ⋅ 4
3 ⋅ 5 ⋅ 7 ⋅ 9

+ 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ 5
3 ⋅ 5 ⋅ 7 ⋅ 9 ⋅ 11

+ 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ 5 ⋅ 6
3 ⋅ 5 ⋅ 7 ⋅ 9 ⋅ 11 ⋅ 13

+ …).

この定理を次の pi_D.sage で数値計算する. その際, 数列𝑎𝑛, 𝐴𝑛及び𝑆𝑛を𝑛 ≥ 0の範囲で

𝑎𝑛 = 2𝑛(𝑛!)2

(2𝑛 + 1)!
, 𝐴𝑛 =∑

𝑛

𝑘=0
𝑎𝑛, 𝑆𝑛 = 2𝐴𝑛

と定義する.

pi_D.sage

円周率πを計算して出力する
[1] 準備
R = RealField(500) # 500ビットの浮動小数点を使う
N = 50 # 第50項まで計算する

[2] 数列S[n]を計算する
a = dict() # 空の辞書を作成する
a[0] = R('1.0') # 初期値
A = dict() # 空の辞書を作成する
A[0] = a[0] # 初期値
S = dict() # 空の辞書を作成する
S[0] = 2 * A[0] # 初期値

for n in range(1, N+1):

 a[n] = n / (2*n + 1) * a[n-1]

 A[n] = A[n-1] + a[n]

 S[n] = 2 * A[n]

[3] 数列S[n]を出力する
print("n, S[n]")

for n in range(0, N+1):

 print(f"{n:02}, {S[n]:.50f}")

34 of 41

pi_D.sageの出力
n, S[n]
00, 2.00
01, 2.6667
02, 2.9333
03, 3.04761904761904761904761904761904761904761904761905
04, 3.09841269841269841269841269841269841269841269841270
05, 3.12150072150072150072150072150072150072150072150072
06, 3.13215673215673215673215673215673215673215673215673
07, 3.13712953712953712953712953712953712953712953712954
08, 3.13946968064615123438652850417556299909241085711674
09, 3.14057816968033686299940169909210156888175464026857
10, 3.14110602160137763852934131571902469735287072748373
11, 3.14135847252013627030452982801885749792601320397794
12, 3.14147964896114041355662031392277724220112159269516
13, 3.14153799317347574178910832565429415611135896504048
14, 3.14156615934494796921168874511088852834388735168995
15, 3.14157978813759582119035669000924064394027205490744
16, 3.14158639603706144639213508753571439695670100192197
17, 3.14158960558823046434728459490571593413610934761475
18, 3.14159116699150187848762759849112208735852421849232
19, 3.14159192767514692640215367716093534149252120686857
20, 3.14159229874033963270192249602425888009447095729601
21, 3.14159247995822444275529796570169595708612083541173
22, 3.14159256855363479433694819532177630583759410915720
23, 3.14159261190883560468541532896564541267342145588370
24, 3.14159263314403600159078698626060170989913280938240
25, 3.14159264355344796085812603395420773795095210031313
26, 3.14159264865995194087606594414352390265561816756217
27, 3.14159265116678116743032735460009729260154514602988
28, 3.14159265239820605064996453868402808064515839861051
29, 3.14159265300348268816470145967443473917506999733658
30, 3.14159265330115972300801469950578227615699373441498
31, 3.14159265344763572428012121434342947689413081139006
32, 3.14159265351974698644485057549427117571856752620857
33, 3.14159265355526447377971727576259619155746919171619
34, 3.14159265357276584435052115705423460515924682399530
35, 3.14159265358139328054739630980363382313195410751318
36, 3.14159265358564790661708816595402247857054948020693
37, 3.14159265358774685547813614832154754858692319740251
38, 3.14159265358878270037060138637305342729630243446007
39, 3.14159265358929406683650194693012594969713522237456
40, 3.14159265358954659348632938424226052866050943862863
41, 3.14159265358967133556636462436030291104000754545293
42, 3.14159265358973297282944086065392385292164190411905
43, 3.14159265358976343722383486250019627247233474805748
44, 3.14159265358977849827274875105340960348616042371244
45, 3.14159265358978594604418968495335026167981048310225
46, 3.14159265358978962988812821139848220014118578129506
47, 3.14159265358979145242144516658712642232733987619045
48, 3.14159265358979235429360201039181634670811716026240
49, 3.14159265358979280067477054924464267291678470490407
50, 3.14159265358979302165554705362722996311909537056826

Figure 13: pi_D.sage の出力

35 of 41

数列𝑆𝑛が円周率𝜋に収束している.

3.5.5 方法 E

定理:BBP 公式の１種

𝜋 =∑
∞

𝑘=0

(−1)𝑘

4𝑘
(2
4𝑘 + 1

+ 2
4𝑘 + 2

+ 1
4𝑘 + 3

).

この定理を次の pi_E.sage で数値計算する. その際, 数列𝑆𝑛を𝑛 ≥ 0の範囲で

𝑆𝑛 =∑
𝑛

𝑘=0

(−1)𝑘

4𝑘
(2
4𝑘 + 1

+ 2
4𝑘 + 2

+ 1
4𝑘 + 3

)

と定義する.

pi_E.sage

円周率πを計算して出力する
[1] 準備
R = RealField(500) # 500ビットの浮動小数点を使う
N = 50 # 第50項まで計算する

[2] 数列S[n]を計算する
S = dict() # 空の辞書を作成する
S[0] = R(10/3) # 初期値

for n in range(1, N+1):

 S[n] = S[n-1] + (-1)^n / 4^n * (2 / (4*n+1) + 2 / (4*n+2) + 1 / (4*n+3))

[3] 数列S[n]を出力する
print("n, S[n]")

for n in range(0, N+1):

 print(f"{n:02}, {S[n]:.50f}")

36 of 41

pi_E.sageの出力
n, S[n]
00, 3.33
01, 3.11428571428571428571428571428571428571428571428571
02, 3.14635642135642135642135642135642135642135642135642
03, 3.14067876567876567876567876567876567876567876567877
04, 3.14177794438533602620289926791474779090878162085592
05, 3.14155370078473372994842910040110201639344188812489
06, 3.14160105432818102339572254769454930984073533541833
07, 3.14159080712063560255775443497671467876917434172163
08, 3.14159306543695929112409006013586924968845114335138
09, 3.14159256065081639848448689421691385704884797743242
10, 3.14159267476304992034083294937181756555437157087434
11, 3.14159264872790772304409124929986772487187593925752
12, 3.14159265471365468296087046098454159441969506690858
13, 3.14159265332852165082581610452688324996889778592262
14, 3.14159265365083239080983725620154770186427034941786
15, 3.14159265357547166272195889428146678389863530287324
16, 3.14159265359316624081045045109122263749777248409997
17, 3.14159265358899615999710059175916598599455025215759
18, 3.14159265358998216314864724563006787032751335224398
19, 3.14159265358974833832009801241987336414803881833907
20, 3.14159265358980393554449650554615942404509089294281
21, 3.14159265358979068432524618249153024224099144642804
22, 3.14159265358979384954548561188021681668137749803249
23, 3.14159265358979309198915145803958227836270841788101
24, 3.14159265358979327363133743432346329011613187392824
25, 3.14159265358979323000529137033878399369923664129848
26, 3.14159265358979324049941648777038012123258253760025
27, 3.14159265358979323797146913387631345899920982687102
28, 3.14159265358979323858124007410721105059360706922611
29, 3.14159265358979323843397408657442647448565502105518
30, 3.14159265358979323846958141055924334685997384747584
31, 3.14159265358979323846096264695256542714780501583176
32, 3.14159265358979323846305093304717055328729398685945
33, 3.14159265358979323846254447003156501438473868641809
34, 3.14159265358979323846266741021760984056855030263124
35, 3.14159265358979323846263754221704165642347619958527
36, 3.14159265358979323846264480435029584168350167586014
37, 3.14159265358979323846264303729828904318829827110895
38, 3.14159265358979323846264346757145601634554443437171
39, 3.14159265358979323846264336272998762091556204044979
40, 3.14159265358979323846264338829235719277006149417965
41, 3.14159265358979323846264338205594707663787627084419
42, 3.14159265358979323846264338357832019021016311554848
43, 3.14159265358979323846264338320648657867498851222919
44, 3.14159265358979323846264338329735360412295174236683
45, 3.14159265358979323846264338327513668347458927727031
46, 3.14159265358979323846264338328057133533811498562796
47, 3.14159265358979323846264338327924130684169581851440
48, 3.14159265358979323846264338327956695086726051125256
49, 3.14159265358979323846264338327948718623814722392560
50, 3.14159265358979323846264338327950673211871175179968

Figure 14: pi_E.sage の出力

37 of 41

数列𝑆𝑛が円周率𝜋に収束している.

3.5.6 方法 F

定理: アルキメデス
数列𝑎𝑛及び𝑏𝑛を𝑎0 = 3, 𝑏0 = 2

√
3,

𝑏𝑛 = 2𝑎𝑛−1𝑏𝑛−1
𝑎𝑛−1 + 𝑏𝑛−1

𝑎𝑛 = √𝑎𝑛−1𝑏𝑛

で定める. このときlim𝑛→∞ 𝑎𝑛 = lim𝑛→∞ 𝑏𝑛 = 𝜋が成立する.

この定理を次の pi_F.sage で数値計算をする.

pi_F.sage

円周率πを計算して出力する
[1] 準備
R = RealField(500) # 500ビットの浮動小数点を使う
N = 50 # 第50項まで計算する

[2] 数列a[n]及びb[n]を計算する
a = dict() # 空の辞書を作成する
a[0] = R('3.0') # 初期値
b = dict() # 空の辞書を作成する
b[0] = 2 * R(sqrt(3)) # 初期値

for n in range(1, N+1):

 b[n] = (2 * a[n-1] * b[n-1]) / (a[n-1] + b[n-1])

 a[n] = sqrt(a[n-1] * b[n])

[3] 数列a[n]及びb[n]を出力する
print("n, a[n]")

for n in range(0, N+1):

 print(f"{n:02}, {a[n]:.50f}")

print("n, b[n]")

for n in range(0, N+1):

 print(f"{n:02}, {b[n]:.50f}")

38 of 41

pi_F.sageの出力(1/2)
n, a[n]
00, 3.00
01, 3.10582854123024914818678605148857994018882681583917
02, 3.13262861328123819716174946949173624464977691548157
03, 3.13935020304686720713514682120842118915035058936259
04, 3.14103195089050963811135292645966010703641221616283
05, 3.14145247228546207545060930896122564524766230454968
06, 3.14155760791185764551646334512985954150437647958850
07, 3.14158389214831840866896960372115335052004491578109
08, 3.14159046322805009573845850593095172355428230867580
09, 3.14159210599927155054477664061011735312749725496628
10, 3.14159251669215744759287408476883190596771889236819
11, 3.14159261936538395518954931206531904222219272559484
12, 3.14159264503369089667214150891923841272262301124210
13, 3.14159265145076765170425364049221902044842747238542
14, 3.14159265305503684169112318041547420225727680588685
15, 3.14159265345610413926464315961507833135434148742941
16, 3.14159265355637096366282331655411336427491350418412
17, 3.14159265358143766976266836592257517887034950737165
18, 3.14159265358770434628764837889804718575024086724766
19, 3.14159265358927101541889455405649997380040637883158
20, 3.14159265358966268270170617109077471998597937915933
21, 3.14159265358976059952240907992713475335611514596288
22, 3.14159265358978507872758480742233672087513968308886
23, 3.14159265358979119852887873931401921020342658408646
24, 3.14159265358979272847920222228805745737603148388846
25, 3.14159265358979311096678309303163687072171603227401
26, 3.14159265358979320658867831071753608978017050208549
27, 3.14159265358979323049415211513901116740241120283305
28, 3.14159265358979323647052056624437995386157307072586
29, 3.14159265358979323796461267902072215154221364349319
30, 3.14159265358979323833813570721480770102898941829715
31, 3.14159265358979323843151646426332908840484683897390
32, 3.14159265358979323845486165352545943524907141145407
33, 3.14159265358979323846069795084099202196014381815605
34, 3.14159265358979323846215702516987516863791293630542
35, 3.14159265358979323846252179375209595530735527937238
36, 3.14159265358979323846261298589765115197471586910972
37, 3.14159265358979323846263578393403995114155601679221
38, 3.14159265358979323846264148344313715093326605372835
39, 3.14159265358979323846264290832041145088119356296335
40, 3.14159265358979323846264326453973002586817544027216
41, 3.14159265358979323846264335359455966961492090959937
42, 3.14159265358979323846264337585826708055160727693117
43, 3.14159265358979323846264338142419393328577886876412
44, 3.14159265358979323846264338281567564646932176672236
45, 3.14159265358979323846264338316354607476520749121192
46, 3.14159265358979323846264338325051368183917892233431
47, 3.14159265358979323846264338327225558360767178011491
48, 3.14159265358979323846264338327769105904979499456006
49, 3.14159265358979323846264338327904992791032579817134
50, 3.14159265358979323846264338327938964512545849907417

Figure 15: pi_F.sage の出力(1/2)

39 of 41

pi_F.sageの出力(2/2)
n, b[n]
00, 3.46410161513775458705489268301174473388561050762076
01, 3.21539030917347247767064390192953159668633695427543
02, 3.15965994209750048331663497783321048622753845335770
03, 3.14608621513143497109809879423725415626535958734305
04, 3.14271459964536829816885909377212387100096909151116
05, 3.14187304997982387174548709369022941688388102348584
06, 3.14166274705684852622449081389391588401790798952860
07, 3.14161017660468953876347036065980109684907227290423
08, 3.14159703432152615199321889481425684240758108661303
09, 3.14159374877135202797598113563168807582863851727834
10, 3.14159292738509703354800829905295050548454231704178
11, 3.14159272203861381834280467149982302950668046145178
12, 3.14159267070199804787701825050084226574379561970852
13, 3.14159265786784441984400852933675983498500447303091
14, 3.14159265465930603249722039224985939931722053924073
15, 3.14159265385717143688936486830259148489199468185454
16, 3.14159265365663778806420358158604057682444082197640
17, 3.14159265360650437586271342204684115884261758814853
18, 3.14159265359397102281264089229575692803102833233243
19, 3.14159265359083768455014151049134261992351608606232
20, 3.14159265359005434998451783695482383229502370716927
21, 3.14159265358985851634311199181535568460887275067554
22, 3.14159265358980955793276053510827999451182659883305
23, 3.14159265358979731833017267121762303116406736052502
24, 3.14159265358979425842952570526284078777565850054266
25, 3.14159265358979349345436396377526285176908946295715
26, 3.14159265358979330221057352840343821931998052704047
27, 3.14159265358979325439962591956048642692973662577709
28, 3.14159265358979324244688901734974875168980273375596
29, 3.14159265358979323945870479179706434993342095345659
30, 3.14159265358979323871165873540889325056017561417587
31, 3.14159265358979323852489722131185047578347991096782
32, 3.14159265358979323847820684278758978209346946214157
33, 3.14159265358979323846653424815652460867122706724599
34, 3.14159265358979323846361609949875831531568273210403
35, 3.14159265358979323846288656233431674197679766479241
36, 3.14159265358979323846270417804320634864207646149412
37, 3.14159265358979323846265858197042875030839616464015
38, 3.14159265358979323846264718295223435072497609067482
39, 3.14159265358979323846264433319768575082912107219900
40, 3.14159265358979323846264362075904860085515731758102
41, 3.14159265358979323846264344264938931336166637892658
42, 3.14159265358979323846264339812197449148829364426297
43, 3.14159265358979323846264338699012078601995046059707
44, 3.14159265358979323846264338420715735965286466468060
45, 3.14159265358979323846264338351141650306109321570148
46, 3.14159265358979323846264338333748128891315035345670
47, 3.14159265358979323846264338329399748537616463789550
48, 3.14159265358979323846264338328312653449191820900521
49, 3.14159265358979323846264338328040879677085660178263
50, 3.14159265358979323846264338327972936234059119997699

Figure 16: pi_F.sage の出力(2/2)
40 of 41

数列𝑎𝑛及び𝑏𝑛が円周率𝜋に収束している.

4 おわりに
数値実験をして計算式の神秘を体感出来たでしょうか？ 取り敢えずプログラムを動作さ
せたなら、SageMath/Python の超基礎は出来たので自信を持って下さい. 今回は残念なこ
とに神秘のカラクリ, つまり数学の理論は全く説明しませんでした. 興味があって勉強した
い人は教科書を少しずつ読んでいきましょう. 何れも難しい内容なのですぐには理解でき
ませんが、地道な取り組みでいつか分かるかもしれません. そしてページ数が多くなりま
したが, 神秘の計算式を 14 個も紹介しました. 数学の世界は広く深く 14 個では終わりま
せん. 実は高校生レベルですら他にも沢山の計算式があります. 自分で探して本稿を参考に
しながらコーディングしたら楽しいかもしれません. 陰ながら応援します.

参考文献
三谷純. (2021). Python ゼロからはじめるプログラミング. 翔泳社.

滝澤成人. (2018). ステップ 30 Python[基礎編]ワークブック. カットシステム.

41 of 41

	1 はじめに
	1.1 目標
	1.2 プログラミング初心者の方へ

	2 SageMathの電卓モード
	2.1 チュートリアル
	2.2 電卓モードで遊ぼう

	3 SageMathでプログラミング
	3.1 チュートリアル
	3.1.1 プログラムの作成と起動
	3.1.2 変数
	3.1.3 forループ
	3.1.4 辞書型
	3.1.5 f文字列
	3.1.6 フィボナッチ数
	3.1.7 高精度の浮動小数点
	3.1.8 グラフへプロット

	3.2 平方根2 = 1.41421356237309504880…
	3.2.1 方法A
	3.2.2 方法B

	3.3 対数log 2 = 0.69314718055994530941…
	3.3.1 方法A
	3.3.2 方法B

	3.4 ネイピア数e = 2.71828182845904523536…
	3.4.1 方法A
	3.4.2 方法B
	3.4.3 方法C
	3.4.4 方法D

	3.5 円周率π = 3.14159265358979323846…
	3.5.1 方法A
	3.5.2 方法B
	3.5.3 方法C
	3.5.4 方法D
	3.5.5 方法E
	3.5.6 方法F

	4 おわりに
	参考文献

